Multilinear Interpolation Over the Boolean Hypercube

Answer

f~(x1,x2,x3)=16x1+2x2+3x1x2+6x3+9x1x3+6x2x3+6x1x2x3+3\tilde f(x_1,x_2,x_3) = 16x_{1} +2x_{2} +3x_{1}x_{2} +6x_{3} +9x_{1}x_{3} +6x_{2}x_{3} +6x_{1}x_{2}x_{3} + 3

Step by Step Solution

General Form

f~(x1,...,xn)=w{0,1}nf(w).Lw(x1,...,xn) \tilde f(x_1, ..., x_n) = \sum _{w \in \{0, 1\}^n} f(w).L_w(x_1, ..., x_n) where, for any w=(w1,...,wv)w = (w_1, ..., w_v)Lw(x1,....,xn)=i=1nLiL_w(x_1, ...., x_n) = \prod_{i = 1}^n L_iLi=j=0,jin1(xxjxixj)L_i = \prod_{j=0, j \neq i}^{n - 1}(\dfrac{x-x_j}{x_i-x_j}) where L0=(1xi)L_0 = (1 - x_i) and L1=xiL_1 = x_i

Finding the Lagrange Polynomials

L(0,0,0)L(0,0,0)
=
(L0)(L0)(L0)(L_0)(L_0)(L_0)
=
(1x1)(1x2)(1x3)(1 - x_{1})(1 - x_{2})(1 - x_{3})
=
16x1+16x2+x1x2+16x3+x1x3+x2x3+16x1x2x3+116x_{1} +16x_{2} +x_{1}x_{2} +16x_{3} +x_{1}x_{3} +x_{2}x_{3} +16x_{1}x_{2}x_{3} + 1
L(0,0,1)L(0,0,1)
=
(L0)(L0)(L1)(L_0)(L_0)(L_1)
=
(1x1)(1x2)(x3)(1 - x_{1})(1 - x_{2})(x_{3})
=
x1+16x1x2+16x1x3+x1x2x3x_{1} +16x_{1}x_{2} +16x_{1}x_{3} +x_{1}x_{2}x_{3}
L(0,1,0)L(0,1,0)
=
(L0)(L1)(L0)(L_0)(L_1)(L_0)
=
(1x1)(x2)(1x3)(1 - x_{1})(x_{2})(1 - x_{3})
=
x2+16x1x2+16x2x3+x1x2x3x_{2} +16x_{1}x_{2} +16x_{2}x_{3} +x_{1}x_{2}x_{3}
L(0,1,1)L(0,1,1)
=
(L0)(L1)(L1)(L_0)(L_1)(L_1)
=
(1x1)(x2)(x3)(1 - x_{1})(x_{2})(x_{3})
=
x1x2+16x1x2x3x_{1}x_{2} + 16x_{1}x_{2}x_{3}
L(1,0,0)L(1,0,0)
=
(L1)(L0)(L0)(L_1)(L_0)(L_0)
=
(x1)(1x2)(1x3)(x_{1})(1 - x_{2})(1 - x_{3})
=
x3+16x1x3+16x2x3+x1x2x3x_{3} +16x_{1}x_{3} +16x_{2}x_{3} +x_{1}x_{2}x_{3}
L(1,0,1)L(1,0,1)
=
(L1)(L0)(L1)(L_1)(L_0)(L_1)
=
(x1)(1x2)(x3)(x_{1})(1 - x_{2})(x_{3})
=
x1x3+16x1x2x3x_{1}x_{3} +16x_{1}x_{2}x_{3}
L(1,1,0)L(1,1,0)
=
(L1)(L1)(L0)(L_1)(L_1)(L_0)
=
(x1)(x2)(1x3)(x_{1})(x_{2})(1 - x_{3})
=
x2x3+16x1x2x3x_{2}x_{3} +16x_{1}x_{2}x_{3}
L(1,1,1)L(1,1,1)
=
(L1)(L1)(L1)(L_1)(L_1)(L_1)
=
(x1)(x2)(x3)(x_{1})(x_{2})(x_{3})
=
x1x2x3x_{1}x_{2}x_{3}

Get the final Polynomial

f~(x1,x2,x3)=3(16x1+16x2+x1x2+16x3+x1x3+x2x3+16x1x2x3+1)+2(x1+16x1x2+16x1x3+x1x2x3)+5(x2+16x1x2+16x2x3+x1x2x3)+7(x1x2+16x1x2x3)+9(x3+16x1x3+16x2x3+x1x2x3)+0(x1x3+16x1x2x3)+0(x2x3+16x1x2x3)+0(x1x2x3)\tilde f(x_1,x_2,x_3) = 3(16x_{1} +16x_{2} +x_{1}x_{2} +16x_{3} +x_{1}x_{3} +x_{2}x_{3} +16x_{1}x_{2}x_{3} +1) +2(x_{1} +16x_{1}x_{2} +16x_{1}x_{3} +x_{1}x_{2}x_{3} ) +5(x_{2} +16x_{1}x_{2} +16x_{2}x_{3} +x_{1}x_{2}x_{3} ) +7(x_{1}x_{2} +16x_{1}x_{2}x_{3} ) +9(x_{3} +16x_{1}x_{3} +16x_{2}x_{3} +x_{1}x_{2}x_{3} ) +0(x_{1}x_{3} +16x_{1}x_{2}x_{3} ) +0(x_{2}x_{3} +16x_{1}x_{2}x_{3} ) +0(x_{1}x_{2}x_{3} )
f~(x1,x2,x3)=16x1+2x2+3x1x2+6x3+9x1x3+6x2x3+6x1x2x3+3\tilde f(x_1,x_2,x_3) = 16x_{1} + 2x_{2} +3x_{1}x_{2} + 6x_{3} + 9x_{1}x_{3} +6x_{2}x_{3} + 6x_{1}x_{2}x_{3} + 3

Evaluations

f~(0,0,0)=3\tilde f(0,0,0) = 3
f~(0,0,1)=2\tilde f(0,0,1) = 2
f~(0,1,0)=5\tilde f(0,1,0) = 5
f~(0,1,1)=7\tilde f(0,1,1) = 7
f~(1,0,0)=9\tilde f(1,0,0) = 9
f~(1,0,1)=0\tilde f(1,0,1) = 0
f~(1,1,0)=0\tilde f(1,1,0) = 0
f~(1,1,1)=0\tilde f(1,1,1) = 0