Univariate Lagrange Interpolation Over Finite Field
Answer
f(x)=13x4+9x3+3x2+8x+3 Evaluation
Step by Step Solution
General Form
f(x)=y0L0+y1L1+y2L2+...+yn−1Ln−1Li=j=0,j=i∏n−1(xi−xjx−xj)Finding the Lagrange Polynomials
L0=(x0−x1x−x1)(x0−x2x−x2)(x0−x3x−x3)(x0−x4x−x4) =(0−1x−1)(0−2x−2)(0−3x−3)(0−4x−4) =5(x−1)(x−2)(x−3)(x−4) L0=5x4+1x3+5x2+5x+1 L1=(x1−x0x−x0)(x1−x2x−x2)(x1−x3x−x3)(x1−x4x−x4) =(1−0x−0)(1−2x−2)(1−3x−3)(1−4x−4) =14(x−0)(x−2)(x−3)(x−4) L1=14x4+10x3+7x2+4x L2=(x2−x0x−x0)(x2−x1x−x1)(x2−x3x−x3)(x2−x4x−x4) =(2−0x−0)(2−1x−1)(2−3x−3)(2−4x−4) =13(x−0)(x−1)(x−3)(x−4) L2=13x4+15x3+9x2+14x L3=(x3−x0x−x0)(x3−x1x−x1)(x3−x2x−x2)(x3−x4x−x4) =(3−0x−0)(3−1x−1)(3−2x−2)(3−4x−4) =14(x−0)(x−1)(x−2)(x−4) L3=14x4+4x3+9x2+7x L4=(x4−x0x−x0)(x4−x1x−x1)(x4−x2x−x2)(x4−x3x−x3) =(4−0x−0)(4−1x−1)(4−2x−2)(4−3x−3) =5(x−0)(x−1)(x−2)(x−3) L4=5x4+4x3+4x2+4x Get the Final Polynomial
f(x)=3(5x4+1x3+5x2+5x+1)+2(14x4+10x3+7x2+4x)+5(13x4+15x3+9x2+14x)+7(14x4+4x3+9x2+7x)+9(5x4+4x3+4x2+4x) f(x)=13x4+9x3+3x2+8x+3